硼酸类葡萄糖探针的研究进展Research progress of boronic acid-based glucose probes
任丽娟,张方圆,李春芳,姚庆强,王凯
摘要(Abstract):
葡萄糖探针的开发是分子识别领域的研究热点。生物体内异常的葡萄糖变化往往与代谢性疾病的发生和发展密切相关,包括糖尿病、肥胖、恶性肿瘤及神经退行性疾病等。因此,寻找简单、有效的葡萄糖探针对相关代谢性疾病的诊断和治疗具有重大意义。硼酸类化合物能够迅速与葡萄糖等糖类物质中1,2-或1,3-二羟基可逆性结合,这一特性使其成为识别葡萄糖的理想分子探针。此外,硼酸类探针具备合成简便、稳定性好、灵敏度高、分析速度快等优点。本文首先阐述了硼酸与葡萄糖的识别机理,并对近年来基于硼酸类的葡萄糖探针研究进行了归纳和总结,包括荧光探针、电化学探针、凝胶探针和光子晶体探针等。通过比较不同类型探针的检测原理和性能,深入探讨了各自的优缺点。还重点探讨了硼酸葡萄糖传感策略在未来面临的挑战与机遇,并从连续血糖监测及复杂生物体系中葡萄糖的实时动态监测两方面展望了硼酸类葡萄糖探针的应用前景。
关键词(KeyWords): 硼酸;探针;葡萄糖检测;荧光;电化学
基金项目(Foundation): 山东省自然科学基金资助项目(ZR2023QB181);; 山东第一医科大学高层次人才引进经费资助项目(2025-2029)
作者(Author): 任丽娟,张方圆,李春芳,姚庆强,王凯
DOI: 10.14002/j.hxya.2025.04.011
参考文献(References):
- [1]MYERS M G,AFFINATI A H,RICHARDSON N,et al. Central nervous system regulation of organismal energy and glucose homeostasis[J]. Nature Metabolism,2021,3(6):737-750.
- [2]TORIGIAN D A,HUANG S S,HOUSENI M,et al.Functional imaging of cancer with emphasis on molecular techniques[J]. CA-A Cancer Journal for Clinicians,2007,57(4):206-224.
- [3]RODRIGUES T B,SERRAO E M,KENNEDY B W C, et al. Magnetic resonance imaging of tumor glycolysis using hyperpolarized13C-labeled glucose[J].Nature Medicine,2014,20(1):93-97.
- [4]VANDER HEIDEN M G, CANTLEY L C,THOMPSON C B. Understanding the warburg effect:the metabolic requirements of cell proliferation[J].Science,2009,324(5930):1029-1033.
- [5] ZHANG D F,JIN W W,WU R Q,et al. High glucose intake exacerbates autoimmunity through reactiveoxygen-species-mediated TGF-β cytokine activation[J].Immunity,2019,51(4):671-681.
- [6] GEORGIADOU E,HAYTHORNE E,DICKERSON M T, et al. The pore-forming subunit MCU of the mitochondrial Ca2+uniporter is required for normal glucose-stimulated insulin secretion in vitro and in vivo in mice[J]. Diabetologia,2020,63(7):1368-1381.
- [7] HU F H,CHEN Z X,ZHANG L Y,et al. Vibrational imaging of glucose uptake activity in live cells and tissues by stimulated raman scattering[J]. Angewandte Chemie International Edition,2015,54(34):9821-9825.
- [8] YAMADA K,SAITO M,MATSUOKA H,et al. A real-time method of imaging glucose uptake in single,living mammalian cells[J]. Nature Protocols, 2007,2(3):753-762.
- [9] LEWIS M A,HENDRICKSON A W,MOYNIHAN T J. Oncologic emergencies:pathophysiology,presentation,diagnosis,and treatment[J]. CA-A Cancer Journal for Clinicians,2011,61(5):287-314.
- [10] SUN X L,JAMESTD. Glucose sensing in supramolecular chemistry[J]. Chemical Reviews,2015,115(15):8001-8037.
- [11] LORAND J P,EDWARDS J O. Polyol complexes and structure of the benzeneboronate ion[J]. The Journal of Organic Chemistry,1959,24(6):769-774.
- [12] JAMES T D,SANDANAYAKE K R A S,SHINKAI S. A glucose-selective molecular fluorescence sensor[J]. Angewandte Chemie International Edition,1994,33(21):2207-2209.
- [13] JAMES T D,SANDANAYAKE K R A S,SHINKAI S. Novel photoinduced electron-transfer sensor for saccharides based on the interaction of boronic acid and amine[J]. Chemical Communications,1994(4):477-478.
- [14] JAMES T D,SANDANAYAKE K R A S,IGUCHI R, et al. Novel saccharide-photoinduced electron transfer sensors based on the interaction of boronic acid and amine[J]. Journal of the American Chemical Society,1995,117(35):8982-987.
- [15] FRANZEN S,NI W J,WANG B H. Study of the mechanism of electron-transfer quenching by boronnitrogen adducts in fluorescent sensors[J]. The Journal of Physical Chemistry B, 2003, 107(47):12942-12948.
- [16] NI W J,KAUR G,SPRINGSTEEN G,et al. Regulating the fluorescence intensity of an anthracene boronic acid system:a B-N bond or a hydrolysis mechanism?[J].Bioorganic Chemistry,2004,32(6):571-581.
- [17] ZHU L,SHABBIR S H,GRAY M,et al. A structural investigation of the N-B interaction in an o-(N,N-Dialkylaminomethyl)arylboronate system[J].Journal of the American Chemical Society,2006,128(4):1222-1232.
- [18] CHAPIN B M,METOLA P,VANKAYALA S L,et al.Disaggregation is a mechanism for emission turn-on of ortho-aminomethylphenylboronic acid-based saccharide sensors[J]. Journal of the American Chemical Society,2017,139(15):5568-5578.
- [19] SUN X L,JAMES T D,ANSLYN E V. Arresting“loose bolt”internal conversion from-B(OH)2groups is the mechanism for emission turn-on in orthoaminomethylphenylboronic acid-based saccharide sensors[J]. Journal of the American Chemical Society,2018,140(6):2348-2354.
- [20] NORRILD J C. A fluorescent glucose sensor binding covalently to all five hydroxy groups of α-Dglucofuranose. A reinvestigation[J]. Journal of the Chemical Society,Perkin Transactions 2,1999(3):449-456.
- [21] THARMARAJ V, PITCHUMANI K. D-glucose sensing by(E)-(4-((pyren-1-ylmethylene)amino)phenyl)boronic acid via a photoinduced electron transfer(PET)mechanism[J]. RSC Advances,2013,3(29):11566-11570.
- [22] BAI H Y, SUN Q, TIAN H Y, et al. A longwavelength fluorescent probe for saccharides based on boronic-acid receptor[J]. Chinese Journal of Chemistry,2013,31(8):1095-1101.
- [23] QU Z B,ZHOU X G,GU L,et al. Boronic acid functionalized graphene quantum dots as a fluorescent probe for selective and sensitive glucose determination in microdialysate[J]. Chemical Communications,2013,49(84):9830-9832.
- [24] HUANG Y J,OUYANG W J,WU X,et al. Glucose sensing via aggregation and the use of “knock-out”binding to improve selectivity[J]. Journal of the American Chemical Society,2013,135(5):1700-1703.
- [25] TANG Y C,YANG Q,WU T,et al. Fluorescence enhancement of cadmium selenide quantum dots assembled on silver nanoparticles and its application to glucose detection[J]. Langmuir, 2014, 30(22):6324-6330.
- [26] ZHANG X J,GAO C M,LüS Y,et al. Antiphotobleaching flower-like microgels as optical nanobiosensors with high selectivity at physiological conditions for continuous glucose monitoring[J].Journal of Materials Chemistry B, 2014, 2(33):5452-5460.
- [27] PAN G Q, GUO B B, MA Y, et al. Dynamic introduction of cell adhesive factor via reversible multicovalent phenylboronic acid/cis-diol polymeric complexes[J]. Journal of the American Chemical Society,2014,136(17):6203-6206.
- [28]HAO T F, WEI X, NIE Y J, et al. Surface modification and ratiometric fluorescence dual function enhancement for visual and fluorescent detection of glucose based on dual-emission quantum dots hybrid[J]. Sensors and Actuators B-Chemical,2016,230:70-76.
- [29] AWINO J K, GUNASEKARA R W, ZHAO Y.Selective recognition of d-aldohexoses in water by boronic acid-functionalized, molecularly imprinted cross-linked micelles[J]. Journal of the American Chemical Society,2016,138(31):9759-9762.
- [30] WANG C Z,LI Y L,WEI Y M. A sandwich boronate affinity sorbent assay for glucose detection facilitated by boronic acid-terminated fluorescent polymers[J].Sensors and Actuators B-Chemical, 2017, 247:595-601.
- [31] AXTHELM J,ASKES S H C,ELSTNER M,et al.Fluorinated boronic acid-appended pyridinium salts and19F NMR spectroscopy for diol sensing[J]. Journal of the American Chemical Society, 2017, 139(33):11413-11420.
- [32] KAJISA T,SAKATA T. Glucose-responsive hydrogel electrode for biocompatible glucose transistor[J].Science and Technology of Advanced Materials,2017,18(1):26-33.
- [33] YETISEN A K, JIANG N, FALLAHI A, et al.Glucose-sensitive hydrogel optical fibers functionalized with phenylboronic acid[J]. Advanced Materials,2017,29(15):1606380.
- [34] QIAO J,WU H,WEI H,et al. Selective capture and in situ controllable detection of d-glucose in cerebral systems[J]. Analytical Chemistry, 2020, 92(6):4445-4450.
- [35] CAI J Y,LUO W,PAN J J,et al. Glucose-sensing photonic nanochain probes with color change in seconds[J]. Advanced Science, 2022, 9(9):e2105239.
- [36] LU Q,WANG Z H,BAI S M,et al. Hydrophobicity regulation of energy acceptors confined in mesoporous silica enabled reversible activation of optogenetics for closed-loop glycemic control[J]. Journal of the American Chemical Society, 2023, 145(10):5941-5951.
- [37] ZHANG J,ZHENG Y J,LEE J,et al. Continuous glucose monitoring enabled by fluorescent nanodiamond boronic hydrogel[J]. Advanced Science,2023,10(7):e2203943.
- [38]APPLETON B,GIBSON T D. Detection of total sugar concentration using photoinduced electron transfer materials:development of operationally stable,reusable optical sensors[J]. Sensors and Actuators B-Chemical,2000,65(1/3):302-304.
- [39] ARIMORI S,BELL M L,OH C S,et al. Modular fluorescence sensors for saccharides[J]. Chemical Communications,2001(18):1836-1837.
- [40] ARIMORI S,USHIRODA S,PETER L M,et al. A modular electrochemical sensor for saccharides[J].Chemical Communications,2002(20):2368-2369.
- [41] PHILLIPS M D,JAMES T D. Boronic acid based modular fluorescent sensors for glucose[J]. Journal of Fluorescence,2004,14(5):549-559.
- [42] PHILLIPS M D,FYLES T M,BARWELL N P,et al.Carbohydrate sensing using a fluorescent molecular tweezer[J]. Chemical Communications,2009(43):6557-6559.
- [43] YANG W,HE H,DRUECKHAMMER D G. Computerguided design in molecular recognition:design and synthesis of a glucopyranose receptor[J]. Angewandte Chemie International Edition, 2001, 40(9):1714-1718.
- [44] HEINRICHS G,SCHELLENTR?GER M,KUBIK S.An enantioselective fluorescence sensor for glucose based on a cyclic tetrapeptide containing two boronic acid binding sites[J]. European Journal of Organic Chemistry,2006,2006(18):4177-4186.
- [45] SURI J T,CORDES D B,CAPPUCCIO F E,et al.Monosaccharide detection with 4,7-phenanthrolinium salts:charge-induced fluorescence sensing[J].Langmuir,2003,19(12):5145-5152.
- [46] CORDES D B, GAMSEY S, SINGARAM B.Fluorescent quantum dots with boronic acid substituted viologens to sense glucose in aqueous solution[J].Angewandte Chemie International Edition,2006,45(23):3829-3832.
- [47] GAMSEY S,MILLER A,OLMSTEAD M M,et al.Boronic acid-based bipyridinium salts as tunable receptors for monosaccharides and alphahydroxycarboxylates[J]. Journal of the American Chemical Society,2007,129(5):1278-1286.
- [48] LI Y H,ZHANG L,HUANG J,et al. Fluorescent graphene quantum dots with a boronic acid appended bipyridinium salt to sense monosaccharides in aqueous solution[J]. Chemical Communications, 2013, 49(45):5180-5182.
- [49] LIU Y,DENG C M,TANG L,et al. Specific detection of D-glucose by a tetraphenylethene-based fluorescent sensor[J]. Journal of the American Chemical Society,2011,133(4):660-663.
- [50]WU X, LIN L R, HUANG Y J, et al. A2:2stilbeneboronic acid-γ-cyclodextrin fluorescent ensemble highly selective for glucose in aqueous solutions[J].Chemical Communications,2012,48(36):4362-4364.
- [51] XU B Y,HOU J T,LI K,et al. A BINOL based fluorescence sensor for distinction of D-glucose[J].Chinese Journal of Chemistry,2015,33(1):101-106.
- [52] AXTHELM J,G?RLS H,SCHUBERT U S,et al.Fluorinated boronic acid-appended bipyridinium salts for diol recognition and discrimination via(19)F NMR barcodes[J]. Journal of the American Chemical Society,2015,137(49):15402-15405.
- [53] ZHAI W L,MALE L,FOSSEY J S. Glucose selective bis-boronic acid click-fluor[J]. Chemical Communications,2017,53(14):2218-2221.
- [54] RAMOS-SORIANO J, BENITEZ-BENITEZ S J,DAVIS A P,et al. A vibration-induced-emission-based fluorescent chemosensor for the selective and visual recognition of glucose[J]. Angewandte Chemie International Edition,2021,60(31):16880-16884.
- [55] SUN X L,CHAPIN B M,METOLA P,et al. The mechanisms of boronate ester formation and fluorescent turn-on in ortho-aminomethylphenylboronic acids[J]. Nature Chemistry,2019,11(9):768-778.
- [56] NAN K,JIANG Y N,LI M,et al. Recent progress in diboronic-acid-based glucose sensors[J]. BiosensorsBasel,2023,13(6):618.
- [57] WULFF G. Selective binding to polymers via covalent bonds. The construction of chiral cavities as specific receptor sites[J]. Pure and Applied Chemistry,1982,54(11):2093-2102.
- [58] WULFF G,LAUER M,B?HNKE H. Rapid proton transfer as cause of an unusually large neighboring group effect[J]. Angewandte Chemie International Edition,1984,23(9):741-742.
- [59] ZHAI W L,SUN X L,JAMES T D,et al. Boronic acid-based carbohydrate sensing[J]. Chemistry-an Asian Journal,2015,10(9):1836-1848.
- [60] CRANE B C,BARWELL N P,GOPAL P,et al. The development of a continuous intravascular glucose monitoring sensor[J]. Journal of Diabetes Science and Technology,2015,9(4):751-761.
- [61] KARNATI V V,GAO X M,GAO S H,et al. A glucose-selective fluorescence sensor based on boronicacid-diol recognition[J]. Bioorganic&Medicinal Chemistry Letters, 2002, 12(23):3373-3377.
- [62] KAUR G,FANG H,GAO X M,et al. Substituent effect on anthracene-based bisboronic acid glucose sensors[J]. Tetrahedron,2006,62(11):2583-2589.
- [63] WANG Z,ZHANG D Q,ZHU D B. A new saccharide sensor based on a tetrathiafulvalene-anthracene dyad with a boronic acid group[J]. The Journal of Organic Chemistry,2005,70(14):5729-5732.
- [64] TAN W,WANG Z,ZHANG D Q,et al. A new saccharides and nnucleosides sensor based on tetrathiafulvalene-anthracene dyad with two boronic acid groups[J]. Sensors,2006,6(8):954-961.
- [65] KAWANISHI T,ROMEY M A,ZHU P C,et al. A study of boronic acid based fluorescent glucose sensors[J]. Journal of Fluorescence,2004,14(5):499-512.
- [66] SHIBATA H,HEO Y J,OKITSU T,et al. Injectable hydrogel microbeads for fluorescence-based in vivo continuous glucose monitoring[J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(42):17894-17898.
- [67] HEO Y J,SHIBATA H,OKITSU T,et al. Long-term in vivo glucose monitoring using fluorescent hydrogel fibers[J]. Proceedings of the National Academy of Sciences of the United States of America,2011,108(33):13399-13403.
- [68] ZHANG L Q,SU F Y,BUIZER S,et al. A dual sensor for real-time monitoring of glucose and oxygen[J]. Biomaterials,2013,34(38):9779-9788.
- [69] ZHANG L Q, SU F Y, BUIZER S, et al. A polymer-based ratiometric intracellular glucose sensor[J]. Chemical Communications,2014, 50(52):6920-6922.
- [70] MORTELLARO M, DEHENNIS A. Performance characterization of an abiotic and fluorescent-based continuous glucose monitoring system in patients with type 1 diabetes[J]. Biosensors and Bioelectronics,2014,61:227-231.
- [71] TANG J R,MA D D,PECIC S,et al. Noninvasive and highly selective monitoring of intracellular glucose via a two-step recognition-based nanokit[J].Analytical Chemistry,2017,89(16):8319-8327.
- [72] WANG B,CHOU K H,QUEENAN B N,et al.Molecular design of a new diboronic acid for the electrohydrodynamic monitoring of glucose[J].Angewandte Chemie International Edition,2019,58(31):10612-10615.
- [73] DENG M Y,QIAO Y,LIU C,et al. Tricolor core/shell polymeric ratiometric nanosensors for intracellular glucose and oxygen dual sensing[J]. Sensors and Actuators B-Chemical,2019,286:437-444.
- [74] WANG K,ZHANG R X,YUE X M,et al. Synthesis of diboronic acid-based fluorescent probes for the sensitive detection of glucose in aqueous media and biological matrices[J]. ACS Sensors,2021,6(4):1543-1551.
- [75] WANG K,ZHANG R,ZHAO X,et al. Reversible recognition-based boronic acid probes for glucose detection in live cells and zebrafish[J]. Journal of the American Chemical Society, 2023, 145(15):8408-8416.
文章评论(Comment):
|
||||||||||||||||||
|